Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts.

نویسندگان

  • Q Wang
  • R Somwar
  • P J Bilan
  • Z Liu
  • J Jin
  • J R Woodgett
  • A Klip
چکیده

L6 myoblasts stably transfected with a GLUT4 cDNA harboring an exofacial myc epitope tag (L6-GLUT4myc myoblasts) were used to study the role of protein kinase B alpha (PKBalpha)/Akt1 in the insulin-induced translocation of GLUT4 to the cell surface. Surface GLUT4myc was detected by immunofluorescent labeling of the myc epitope in nonpermeabilized cells. Insulin induced a marked translocation of GLUT4myc to the plasma membrane within 20 min. This was prevented by transient transfection of a dominant inhibitory construct of phosphatidylinositol (PI) 3-kinase (Deltap85alpha). Transiently transfected cells were identified by cotransfection of green fluorescent protein. A constitutively active PKBalpha, created by fusion of a viral Gag protein at its N terminus (GagPKB), increased the cell surface density of GLUT4myc compared to that of neighboring nontransfected cells. A kinase-inactive, phosphorylation-deficient PKBalpha/Akt1 construct with the mutations K179A (substitution of alanine for the lysine at position 179), T308A, and S473A (AAA-PKB) behaved as a dominant-negative inhibitor of insulin-dependent activation of cotransfected wild-type hemagglutinin (HA)-tagged PKB. Furthermore, AAA-PKB markedly inhibited the insulin-induced phosphorylation of cotransfected BAD, demonstrating inhibition of the endogenous PKB/Akt. Under the same conditions, AAA-PKB almost entirely blocked the insulin-dependent increase in surface GLUT4myc. PKBalpha with alanine substitutions T308A and S473A (AA-PKB) or K179A (A-PKB) alone was a less potent inhibitor of insulin-dependent activation of wild-type HA-PKB or GLUT4myc translocation than was AAA-PKB. Cotransfection of AAA-PKB with a fourfold DNA excess of HA-PKB rescued insulin-stimulated GLUT4myc translocation. AAA-PKB did not prevent actin bundling (membrane ruffling), though this response was PI 3-kinase dependent. Therefore, it is unlikely that AAA-PKB acted by inhibiting PI 3-kinase signaling. These results outline an important role for PKBalpha/Akt1 in the stimulation of glucose transport by insulin in muscle cells in culture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous Effects of Metformin and Sitagliptin on the Contents of Insulin Resistance Proteins Glucose Transporter 4 and Protein Kinase B in Diabetic Patients\' Adipose Tissue

Objective: Obesity is a factor in the development of insulin resistance and type 2 diabetes. Obesity contributes a wide variety of metabolic changes such as insulin resistance. The insulin signal mechanism to intra-cells occurs in insulin resistance, primarily in adipose tissue cells, which can be appropriate targets for therapeutic approaches by recognizing the proteins in this pathway. The st...

متن کامل

Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity.

Hyperglycemia and hyperinsulinemia are cardinal features of acquired insulin resistance. In adipose cell cultures, high glucose and insulin cause insulin resistance of glucose uptake, but because of altered GLUT4 expression and contribution of GLUT1 to glucose uptake, the basis of insulin resistance could not be ascertained. Here we show that GLUT4 determines glucose uptake in L6 myotubes stabl...

متن کامل

Glutamine Enhances the Hypoglycemic Effect of Insulin in L6 Cells via Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (AKT)/Glucose Transporter 4 (GLUT4) Signaling Pathway

BACKGROUND Diabetes mellitus (DM) is characterized by a decreased blood level of glutamine (Gln), which may contribute to the disturbance in the effect of insulin on skeletal muscle. Therefore, it is crucial to study how to improve the effect of insulin on skeletal muscle by increasing Gln. In the present study, we investigated the effect of Gln on the hypoglycemic action of insulin in skeletal...

متن کامل

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Insulin but not PDGF relies on actin remodeling and on VAMP2 for GLUT4 translocation in myoblasts.

Insulin promotes the translocation of glucose transporter 4 (GLUT4) from intracellular pools to the surface of muscle and fat cells via a mechanism dependent on phosphatidylinositol (PtdIns) 3-kinase, actin cytoskeletal remodeling and the v-SNARE VAMP2. The growth factor PDGF-BB also robustly activates PtdIns 3-kinase and induces actin remodeling, raising the question of whether it uses similar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 1999